

OptimESM: Optimal high-resolution Earth System Models for exploring future climate change (PI: Torben Koenig) **SMHI**

TipESM: Exploring Tipping Points and Their Impacts Using Earth System Models

(PI: Shuting Yang)

Presentation by Didier Swingedouw

The OptimESM Consortium

Optimal high resolution **Earth System Models** for exploring future climate change

Concept

low

Definition of Idealized Scenarios

\rightarrow provide the base for core ESM-simulations in TIPMIP and TipESM

Idealized Scenarios

Abrupt changes in the Earth system Rapid transitions in CMIP6 models?

- Searched for tipping points in CMIP6 data related to atmosphere/ ocean/ sea-ice systems.
- Build stringent classification criteria that replace judgement by the eye.
- Found >30 cases in 56 models, both abrupt events and gradual changes.
- Highest density of cases is found near the poles.

(J. Angevaare, S. Drijfhout)

Abrupt changes in the Earth system Examples for rapid transitions in CMIP6 models

Downward surface heat flux in GISS-E2-1-H in the Southern Ocean.

Coincides with changes in sea-ice, salinity, sea surface temperature

(J. Angevaare, S. Drijfhout)

temperature

Abrupt changes in the Earth system Rapid transitions in CMIP6 models

Overview on abrupt and gradual changes in CMIP6 models.

Next:

Explore Idealized OptimESM simulations. Extend analysis on other components

(J. Angevaare, S. Drijfhout)

TipESM in a nutshell

EARTH SYSTEM MODELS (ESMs)

- 🕞 EC-Earth (DMI, KNMI, SMHI)
- UKESM (UNIVLEEDS, METO, UREAD, UNIVBRIS)
- IPSL-ESM (CNRS)
- CNRM-ESM (MF-CNRM)
- NOR-ESM (UiB)
- 🕃 GFDL-ESM (UBERN)

IMPACT MODELLING

CNRS, DMI, ISGlobal, METO, UiB, WSL

SIMPLE CLIMATE MODELS (SCMs)

- A Bern3D-LPX (UBERN)
- A FaIR (METOFFICE)
- DATA SERVICE (ESPRI/IPSL)

INTERNATIONAL COLLABORATIONS

- CNR-ISAC (Italy)
- NCAR (USA)
- NOAA-GFDL (USA)
- University Witswatersrand (South Africa)
- IITM (India)
- JAMSTEC (Japan)

- Project duration: 2024 2027
- Budget: ~7 m Euro
 - 13 partners, 9 countries
 - DMI, SMHI, CNRS (IPSL, EPOC), KNMI, UiB, PIK, ISGlobal, UNIVLEEDS, METO, UREAD, UNIVBRIS, UBERN, WSL

7 external partners

- CNR-ISAC, Meteo France, NCAR, NOAA-GFDL, Wits Univ., IITM, JAMSTEC
- 6 Participating ESMs
 - EC-Earth-ESM, UKESM, IPSL-ESM, NorESM, CNRM-ESM, GFDL-ESM
- Coordinator: DMI

TipESM: main goals

The primary objective of TipESM is to deliver a **step change in our understanding** of climate tipping points in the Earth system, including their **impact on ecosystems and society**, combined with a set of **early warning indicators** and **safe emission pathways** that minimise the risk of exceeding such tipping points.

➔ To use ESMs to foster more systematic assessment and investigations of risk and likelihood of TPs, their interactions with and impacts on Earth climate, ecosystems and society.

Parts of the Earth system identified as featuring tipping points

TipESM: Motivations (1)

- How close is the climate system to (a) tipping point(s)?
 What are the risk/thresholds for climate tipping points?
- Reliable early warning signals?
- What processes can trigger a tipping point in the climate system? What is the role of very rare extremes in triggering climate tipping?
- How do the occurrence of tipping events depend on the rate, magnitudes and duration of global warming levels?
- > Are these tipping points (ir)reversible?

→ Call for systematic assessments of the risk and likelihood of tipping points

The world climate might be close to tipping points that have the potential to affect the entire Earth system

TipESM: Motivations (2)

- What are the most likely tipping elements in the climate system?
 - Ice sheet mass loss
 - AMOC and Subpolar Gyre (SPG) collapse
 - Amazon and tropical forest dieback
 - Permafrost thaw
 - Unknown tipping?
- How likely can a crossing of a climate tipping point generates positive feedbacks that lead to crossing of other climate system tipping points (cascading impacts)?

➔ Need for systematic investigations of possible mechanisms, consequence and interactions behind possible tipping elements

Interactions between tipping elements

Tip**ESM**

TipESM: Motivations (3)

- What are the climate drivers for the potential tipping events in ecological and societal systems?
- How can the crossing of climate tipping points cascade through ecological and societal systems (global impacts)?
- Can we develop a set of safe emission pathways that can minimize the risk of crossing climate tipping points?

Interactions and cascading effects between climate, eco- and human systems

TipESM: project concept and schematic

TipESM

Key methodology in TipESM: Earth System Modelling

Planned ESM experiments to investigate climate tipping points and impacts across the Earth system

- **1.** *TipESM_Core*: sampling a range of idealized global warming overshoot, stabilization and return scenarios
 - Building on OptimESM
 - Work together with **TIPMIP** and other ESM groups to design a protocol for coupled ESMs to assess the likelihood, consequences, possible mechanisms, behind various tipping points under focus in **TIPMIP**

TipESM

Key methodology in TipESM: Earth System Modelling

Planned ESM experiments to investigate climate tipping points and impacts across the Earth system

- **1.** *TipESM_Core*: sampling a range of idealized global warming overshoot, stabilization and return scenarios
 - Building on OptimESM
 - Work together with **TIPMIP** and other ESM groups to design a protocol for coupled ESMs to assess the likelihood, consequences, possible mechanisms, behind various tipping points under focus in **TIPMIP**

2. TipESM_ensemble to test robustness and sensitivity of a tipping Event (TE)

- Perturbed initial state ensemble for an identified TE at specific warming levels (*TipESM_Core*); simulation length ~30-70 years
- No guarantee the TE doesn't disappear in the rerun
- To attribute impacts (climate or societal) to a TE need a counter-factual esembel without the TE
- **3.** *TipESM_domain* to study domain specific processes leading to a TE
 - Offline simulations for domain where a TE occurs driven by forcing from that ESM over the TE period
 - Sensitivity experiments sampling resolution, parameterizations and process complexity, etc.

4. *TipESM_forced* to investigate the cascade of tipping

- Deliberately induce TEs in ESMs at a defined GWL (e.g. forcing fields added, key parameters or parameterizations modified, etc.
- Targets:
 - i. AMOC/SPG (e.g., Freshwater or salinity input to the North Atlantic);
 - ii. Amazon (e.g., Modify vegetation types or land use);
 - iii. Antarctic ice (e.g., Modify climate drivers of Antarctic ice loss).

Conclusions

- Two EU projects that aim at improving our Earth System Models (ESM) in order to better evaluate the risk of tipping events in the near future
- ✓ Start to assess the risk of tipping in societal systems due to climate change
- Evaluate safe emission pathways that allow to remain beyond those tipping events
- Develop early warning systems based on ESM, observations and process-based understanding

